
Software&Development Tools

34 July 2007

Linux and FOSS: End-to-End
(and Top-to-Bottom, Too)

Since its beginnings, Linux has permeated computing systems from

enterprise to embedded. While not the only widely used OS, it has

potential to achieve end-to-end acceptance with a uni-fied code base and

development paradigm.

by Bill Weinberg

LiPS Forum & Linux Pundit

B
eginning in the 1990s, Linux and other Free and Open

Source Software (FOSS) began an inexorable march from

hobbyist-ware into the enterprise and continued out to a

range of embedded and ubiquitous computing applications. The

SHQJXLQ·V�SURJUHVV�VWDUWHG�PRGHVWO\�DW�ÀUVW��ZDGGOLQJ�LQWR�QRQ�

FULWLFDO�XWLOLW\�FRPSXWLQJ�UROHV���GHSDUWPHQWDO�ÀOH�DQG�SULQW�VHUY-

ers, and intranet servers). Upon proving itself strikingly reliable,

Linux then moved into increasingly crucial enterprise application

server roles. On the enterprise desktop, Linux displaced legacy

UNIX for technical workstation, documentation and data entry

terminals.

)UHH�6RIWZDUH� DFWXDOO\�PDGH� LWV� ÀUVW� DSSHDUDQFH� D� GHFDGH�

earlier in embedded applications, with GNU tools gcc and

gdb complementing and displacing proprietary compilers and

debuggers, followed by the BSD TCP/IP stack, creating a de facto

standard for IP networking implementations. Other FOSS com-

ponents (like BerkeleyDB and Apache httpd) also found their way

into larger-scale embedded applications through the mid 1990s.

Starting in 1999, Linux EHJDQ� ÀQGLQJ� LWV�ZD\� LQWR� D� UDQJH� RI�

edge and access applications. Adoption came from a mix of or-

ganic use by developers at TEMs, NEPs and other OEMs famil-

iar with UNIX in management and control plane applications,

and from commercial tool kits and services from companies like

RedHat / Cygnus, MontaVista and Metrowerks, which is now part

of FreeScale.

Today Linux and FOSS experience broad and deep deploy-

ment across the entire spectrum of information technology (Figure

1). In the data center, Linux enjoys double-digit market share and

rather more modest global desktop deployment in the single digits.

Linux and FOSS actually garner an even greater number of em-

bedded applications and constitute the industry’s leading platform:

Venture Development Corporation reports up to a third of 32- and

64-bit designs were based on the open source OS in 2006.

Progression from Core to Edge, Deployment
End-to-End

The incremental progress Linux made in the course of a decade

represents a mix of commercial and community investments. On

the technical side, key enablers included CPU and board support,

architectural advances in scaling, memory access and storage and

device drivers. These investments came from across the embedded

device ecosystem—semiconductor manufacturers, board vendors,

systems suppliers, ISVs and community resources. Business- and

tech-savvy semiconductor suppliers like Intel, AMD, FreeScale,

Intel and others not only saw the open source OS as an means to

´ÀOO�VRFNHWVµ�EXW�DFWXDOO\�XVHG�/LQX[�WR�EULQJ�XS�WKHLU�QHZ�SUR-

cessors. Board vendors like Advantech, DTI, Kontron Motorola

and RadiSys found they could offer richer board support, faster by

leveraging community-developed kernels and device drivers. And

systems houses like Fujitsu, HP, IBM and NEC saw an oppor-

tunity to span and consolidate diverse architectures and product

lines while improving margins and expanding services offerings.

ISVs saw an opportunity to consolidate and migrate legacy UNIX-

KRVWHG�SURGXFWV�RQWR�D�VLQJOH�ÁH[LEOH��LQWHURSHUDEOH�KRVW�SODWIRUP�

As such, Linux quickly accrued broad and deep hardware and

software support and today runs on three dozen processor variants,

thousands of SBCs and motherboards, across nearly every enter-

prise vertical and embedded application type (Figure 2).

Linux

Software&DevelopmentTools

36 July 2007

End-to-End Candidates
Certainly other applications platforms exhibit comparable

UHDFK�DQG�DSSOLFDELOLW\��-DSDQ·V�L7521�DQG�«L7521�UXQ�RQ�D�VLPL-

larly broad range of CPUs. Sun’s Java extends from enter-prise to

desktop to embedded, and Microsoft Windows family OSs span a

gamut that reaches from the server room to the desktop to in-car

and in-hand applications. What makes the GNU/Linux platform

different?

The main difference is that the GNU/Linux OS—kernel, li-

EUDULHV�DQG�XWLOLWLHV³FRQVWLWXWH�D�VLQJOH��XQLÀHG�FRGH�EDVH��:KHWKHU�

compiled to run on an ARM or an IBM S/390, in an SoC or on

a server farm, in an MMU-less microcontroller or a 1000+ CPU

supercomputer, the same code implements the same functions, ev-

erywhere. The Linux kernel source tree carefully segregates and

PLQLPL]HV�DUFKLWHFWXUDO�LGLRV\QFUDVLHV��&38�VSHFLÀF�FRGH�FRQVWL-

tutes less than 5% of the total.

Contrast other candidates for end-to-end ubiquity. iTRON,

«L7521��DQG�LWV�VWLOOERUQ�HQWHUSULVH�VLEOLQJ�E7521��DUH�QRW�26V³

they are de facto standard API sets implemented by dozens of dif-

ferent companies with diverse agendas and divergent interpretations

of the instruction sets, APIs and protocols. Sun, for pragmatic, ap-

SOLFDWLRQ�GLUHFWHG�UHDVRQV��VHJPHQWHG�-DYD�LQWR�D�UDQJH�RI�SURÀOHV�

(J2EE, J2SE, J2ME, mid-p, CLDC, etc.), resulting in fragmentation

of class libraries and separate code bases for the major virtual ma-

chines (to say nothing about coffee cup clones). Windows operating

systems don’t pretend to offer continuity with server, desktop and

embedded OSs supporting different code bases and API sets.

Open Source vs. Closed Corporate Standards
Standardization is a very good thing. However, standard-

ization and common, community-based implementation, trump

standards compliance alone. Andrew Tanenbaum, creator of

Minix (on which Linux is loosely based) expressed a key chal-

lenge with standardization when he said “The nice thing about

standards is that there are so many to choose from.” Individual

companies producing point products can usually manage to en-

sure standards compliance for a handful of standards for their

products. Most corporate entities, small or large, are in a poor

position to comply with, let alone implement, the alphabet soup

of standards and protocols, or to build and maintain the tens of

millions of lines of code that implement those standards.

Companies boasting the wherewithal to create and implement

standards, and presumably compliant products, also have the un-

fortunate tendency to improve�WKH�VWDQGDUGV�WKH\�KHOS�WR�GHÀQH�DQG�

later implement. They optimize and add value and otherwise ladle

on their own secret sauces. Intentionally or not, these enhance-

ments impact interoperability and drive vendor lock-in, in precise

opposition to the original goals of open standards regimes.

Open Source looks to standards as a source of requirements

to guide implementation and to foster interoperability with other

OSs and to support legacy code; GNU/Linux implements (among

many others) POSIX, ISO/ANSI C/C++, X11, TCP/IP family

protocols, and wireless and wire-line networking. The LAMP

stack and Linux desktop applications offer the leading and most

compliant implementations of derived protocols like HTTP and

Software&DevelopmentTools

 July 2007 37

document formats like HTML, XML, ODF, etc. and myriad

other standards and API sets. When code and patches to Linux

or other projects omit APIs, re-interpret RFCs or otherwise drift

from compliance, a mix of community and corporate interests

coalesce to “make things right.”

A good example lies in POSIX threads. In the 2.4 kernel

timeframe, Linux (and the GNU libraries) supported a sui gene-

ris threading scheme, and most Linux programs were process-

based. As embedded applications for Linux grew in importance,

having a pthreads-compliant scheme emerged as a key require-

PHQW��H�J���LQ�&DUULHU�*UDGH�/LQX[���,QLWLDOO\��FRPPXQLW\�ÀJXUHV�

saw no need for pthreads and lobbied against implementation

and integration. In spite of this resistance, IBM offered up Next

Generation POSIX Threads (NGPT), a hybrid user-space and

kernel implementation. NGPT met with mixed reviews but actu-

ally spurred a community effort toward true pthreads APIs and

semantics. The result was the development of the highly compli-

ant New POSIX Threads Library (NPTL), which today is the

mainline 2.6 Linux threading scheme.

Benefits of a Unified End-to-End Platform
Being able to scale and repurpose a single code base across

a continuum of system types and applications yields a range of

EHQHÀWV��VRPH�REYLRXV��RWKHUV�OHVV�VR��,Q�WHUPV�RI�LQWHURSHUDELO-

ity, the identical implementation of APIs and protocols provides

the greatest assurances of interoperability of applications (vs.

those based on published standards alone). Complemented by

tradi-tional compliance and interoperability testing, developers

and users have access to the “best of both worlds”—a standards-

based and compliant platform that is also open source, for ap-

plications on servers, on the desktop and in embedded applica-

tions.

7KHUH�LV�DOVR�DQ�DGYDQWDJH�LQ�XQLÀHG�VNLOO�VHWV��0DQ\�RUJD-

nizations run businesses that span horizontally, from enterprise

to embedded applications (like telecom carriers and operators,

medical services suppliers and governments). Others run verti-

cally integrated businesses (like consumer electronics manufac-

turers and networking equipment providers). Both types expend

huge resources in attempting to level internal technology frag-

mentation and the training, maintenance and support challenges

that fragmentation creates. For decades, these companies have

been seeking a strategic end-to-end alternative to a patchwork

of legacy platforms.

A more consistent management model is also a boon to orga-

nizations. These companies, the eco-systems around them, and

the end-users they serve suffer from poor support and quality

of service due to disparities in how systems, on and off shared

networks, are managed. A single platform with identical system

management paradigms and a much smaller range of support is-

sues greatly enhanced organizations ability to provide quality of

service at both system and human interaction levels.

Mobile/
Wireless

Wireless
Access

Multimedia
Home GW

Imaging
SOHO

POS/Kiosk
Retail

CLIENT DEVICES

Infrastructure
Server/Blades

•DSLAM

•Firewall

•Gateway

•PBX

•VPN

•Wireless

EDGE / ACCESS

Utility
Server

Data/Content
Store

Desktop/
Workstation

Application
Server

ENTERPRISE

TODAY 1990s TODAY

Figure 1 Progression of Linux and FOSS from enterprise/utility computing outward to

infrastructure, mobile and other embedded applications.

 July 2007 39

Challenges to Linux and FOSS for End-to-End
Linux and FOSS are not a panacea. They constitute a large,

dynamic and, some would say messy, code base and technology

cloud. A few key areas where Linux and FOSS present challenges

to building and maintaining end-to-end applications include the

many commercial distributions available. Linux and FOSS are

HPEUDFHG�IRU�WKH�IUHHGRP�RI�FKRLFH�DQG�ÁH[LELOLW\�WKH\�RIIHU��7RR�

much choice is not always a good thing, especially when it comes

to desktop distributions (Fedora, OpenSUSE, Ubuntu, Xandros

et al.), embedded toolkits (MontaVista Linux, Wind River Linux,

Open Embedded, etc.), and OEM-derived platforms. Even if the

base platform—kernel, libraries, APIs and core functionality—is

preserved, differences among distributions, kits and devices can

substantially hamper interoperability, especially those dealing

ZLWK�FRQÀJXUDWLRQ��SURYLVLRQLQJ�DQG�VXSSRUW��$W�WKH�YHU\�OHDVW��

the multiplicity of Linux editions complicates the life of ISVs,

service providers and IT departments trying to deploy applica-

tions and services across them.

Linux still lags in terms of application frameworks. The

leading proprietary platforms (Windows and Java) offer develop-

ers common development environments and application frame-

works (even if the platforms do not interoperate as advertised).

The Linux desktop boasts two active and fruitful frameworks

(GTK and Qt); emerging equivalents also exist for mobile. Open

source Eclipse has become the standard for IDEs, but there ex-

ists no single widely accepted programming paradigm that can

be applied end-to-end. Certainly there exist multiple excellent

JVMs, ORBs, rIPCs, databases, web clients/servers, but no single

end-to-end capable framework (although mono, the open source

answer to .NET, is evolving nicely).

The culture has tended to pay less attention to formal testing

regimes. “Many eyes make all bugs shallow,” touts open source

philosopher Eric Raymond. Indeed, the breadth and depth of the

Linux user base exercises, prods and pokes the FOSS code base

in ways and means unavailable to most boutique embedded plat-

forms. However, Linux and FOSS have much to learn from the

formal testing regimes of proprietary OS suppliers. Today, most

formal testing comes from commercial FOSS-based OSVs (Red

Hat, MontaVista and others), but centralized community-based

testing is catching up, as with the test projects hosted by the

Linux Foundation, the home of the Linux Standards Base.

The intent here has not been to promote Linux and FOSS as

a candidate platform for end-to-end infrastructure. Rather, it has

been to explain why Linux and FOSS are already attaining the

status of a ubiquitous platform—one that spans the continuum

from server to desktop to blades to embedded. Certainly viable

alternatives to Linux and FOSS exist at each node; readers need

only look to the fragmented embedded OS market for examples

of this long tail. End-to-end, a few contenders today pretend to

EULGJH�WKRVH�QRGHV�LQ�D�XQLÀHG�IDVKLRQ��EXW�IDOO�VKRUW�IURP�D�PL[�

of proprietary burdens and fragmented code bases.

This momentum enjoyed by Linux belies the well-known

shortcomings of FOSS. Indeed, in many cases, Linux and FOSS

are not deployed because of their attributes, but in spite of them.

However, only Linux and FOSS have accrued the unity, critical

mass and evolutionary velocity to qualify for this strategic plat-

form role.

Linux Phone Standards (LiPS) Forum

[www.lipsforum.org].

Linux Pundit

[www.linuxpundit.com].

See the full line of Mass Storage Products at

www.RedRockTech.com
or call Toll-Free: 800-808-7837

Red Rock Technologies, Inc. 480-483-3777

Mass Storage Modules
for VMEbus and CompactPCI®

PMC CompactFlash Module
Two Type I/ Type II CF Sockets

Software&DevelopmentTools

Massively
Scaled

Enterprise
Server

Robust
Client

Deeply
Embedded

Figure 2 The long reach of Linux scalability.

